JOURNAL OF
PURE AND APPLIED ALGEBRA

Dual pairs techniques in H^{*}-theories

A.J. Calderón Martín*, C. Martín González
Departamento de Algebra, Geometria y Topologia. Universidad de Málaga, Apartado 59, 29080 Málaga, Spain

Abstract

This work is a version for Jordan pairs, of a previous result for Jordan algebras given in Rodriguez (1988). However, the tools we use are completely different from those in Rodriguez (1988). A Jordan H^{*}-pair is (in a sense) a complicated algebraic object enriched with a Hilhert space structure which is well related to its algebraic structure. In this work we describe a certain class of Jordan H^{*}-pairs by forgetting their Hilbert space structure and starting with the remaining purely algebraic information available on it. More precisely, if $\left(\left(R^{+}, R^{-}\right),(\rangle\right)$is an associative pair such that $\left(\left(R^{+}, R^{-}\right)^{J},\{ \}\right)$ with $\{x, y, z\}:=\langle x, y, z\rangle+\langle z, y, x\rangle$ is a topologically simple Jordan H^{*}-pair, then R can be endowed of an (associative) H^{*}-pair structure such that its H^{*}-symmetrized agrees with the Jordan H^{*}-pair R^{J}. (c) 1998 Elsevier Science B.V. All rights reserved.

Let $A=\left(A^{+}, A^{-}\right)$be a pair of modules over a commutative unitary ring K, and $\langle,\rangle:, A^{\sigma} \times A^{-\sigma} \times A^{\sigma} \rightarrow A^{\sigma}$, two trilinear maps such that $(x, y, z) \mapsto\langle x, y, z\rangle$ for $\sigma \in$ $\{+,-\}$. Then A is called an associative pair if the following identities are satisfied:

$$
\langle\langle x, y, z\rangle, u, v\rangle=\langle x,\langle y, z, u\rangle, v\rangle=\langle x, y,\langle z, u, v\rangle\rangle
$$

for $x, z, v \in A^{\sigma}$ and $y, u \in A^{-\sigma}$.
Let us see a first example of an associative pair.
A dual pair of vector spaces over a division K-algebra Δ is a couple (X, X^{\prime}) such that X is a left Δ-vector space, X^{\prime} is a right Δ-vector space and there is a nondegenerate bilinear form $f: X \times X^{\prime} \rightarrow \Delta$. One can consider the X^{\prime}-topology of X (and the X-topology of X^{\prime}), and then define $L\left(X, X^{\prime}\right)$ as the set of all continuous linear maps from X to X^{\prime}. In the same way, if we have two dual pairs $\left(X, X^{\prime}\right)$ and ($\left.Y, Y^{\prime}\right)$,

[^0]one can consider the set $L(X, Y)$ (and $F(X, Y)$ the subset of all finite rank elements of $L(X, Y)$).

Any subpair of $(L(X, Y), L(Y, X)$) containing ($F(X, Y), F(Y, X)$) with the triple products $\langle x, y, z\rangle^{\sigma}:=x y z$, is a prime associative pair with nonzero socle (see [3]).

Let $A=\left(A^{+}, A^{-}\right)$be a pair of K-modules and

$$
Q^{\sigma}: A^{\sigma} \rightarrow \operatorname{hom}_{K}\left(A^{-\sigma}, A^{\sigma}\right)
$$

two quadratic operators for $\sigma \in\{+,-\}$. We define the trilinear operators $\{,,\}^{\sigma}: A^{\sigma} \times$ $A^{-\sigma} \times A^{\sigma} \rightarrow A^{\sigma}$ and the bilinear operator $D^{\sigma}: A^{\sigma} \times A^{-\sigma} \rightarrow \operatorname{End}\left(A^{\sigma}\right)$ as $\{x, y, z\}^{\sigma}=$ $D^{\sigma}(x, y) z:=Q^{\sigma}(x+z) y-Q^{\sigma}(x) y-Q^{\sigma}(z) y$, for $x, z \in A^{\sigma}, y \in A^{-\sigma}$ and $\sigma \in\{+,-\}$. We will say that $A=\left(A^{+}, A^{-}\right)$is a Jordan pair if the next identities and its linearizations are true:

$$
\begin{aligned}
& D^{\sigma}(x, y) Q^{\sigma}(x)=Q^{\sigma}(x) D^{-\sigma}(y, x) \\
& D^{\sigma}\left(Q^{\sigma}(x) y, y\right)=D^{\sigma}\left(x, Q^{-\sigma}(y) x\right) \\
& Q^{\sigma}\left(Q^{\sigma}(x) y\right)=Q^{\sigma}(x) Q^{-\sigma}(y) Q^{\sigma}(x)
\end{aligned}
$$

for $x, z \in A^{\sigma}, y \in A^{-\sigma}$ and $\sigma \in\{+,-\}$.
If A is an associative pair, then A^{J} will denote the symmetrized Jordan pair of A, that is, the Jordan pair whose underlying K-module agrees with that of A, and whose quadratic operators are given by $Q^{\sigma}(x) y=\langle x, y, x\rangle^{\sigma}$. Let $A=\left(A^{+}, A^{-}\right), B=\left(B^{+}, B^{-}\right)$ be K-pairs. A couple $f=\left(f^{+}, f^{-}\right), f^{\sigma}: A^{\sigma} \rightarrow B^{\sigma}$ of K-linear mappings will be called an homomorphism of the given pairs when $f^{\sigma}(\langle x, y, z\rangle)=\left\langle f^{\sigma}(x), f^{-\sigma}(y), f^{\sigma}(z)\right\rangle$ with $x, z \in A^{\pi}$ and $y \in A^{-\pi}$. The definitions of epimorphism, monomorphism and isomorphism are the usual ones. The opposite pair A^{op} of the pair $A=\left(A^{+}, A^{-}\right)$is the pair $\left(A^{-}, A^{+}\right)$with the same triple products. An anti-automorphism from A to B is a K-linear mapping $v=\left(v^{+}, v^{-}\right)$from the pair A to the pair $B^{\text {op }}$ satisfying $v^{\sigma}(\langle x, y, z\rangle)=$ $\left\langle v^{\sigma}(z), v^{-\sigma}(y), v^{\sigma}(x)\right\rangle$ for all $x, z \in A^{\sigma}$ and $y \in A^{-\sigma}$. An anti-automorphism $v=\left(v^{+}, v^{-}\right)$ of the pair will be called involutive if $v^{\sigma} v^{-\sigma}=I d$. Let $A=\left(A^{+}, A^{--}\right)$be a pair over K. If $B=\left(B^{+}, B^{-}\right)$is a couple of submodules $B^{\sigma} \subset A^{\sigma}$, then B will be called a subpair of A if $\left\langle B^{\sigma}, B^{-\sigma}, B^{\sigma}\right\rangle \subset B^{\sigma}$. A couple of K-submodules $I=\left(I^{+}, I^{-}\right), I^{\sigma} \subset A^{\sigma}$ is said to be an inner ideal iff $\left\langle x^{\sigma}, A^{-\sigma}, x^{\sigma}\right\rangle \subset I^{\sigma}$ for all $x^{\sigma} \in I^{\sigma}$. An ideal $I=\left(I^{+}, I^{-}\right)$of A is a couple of K-submodules such that $\left\langle I^{\sigma}, A^{-\sigma}, A^{\sigma}\right\rangle,\left\langle A^{\sigma}, I^{-\sigma}, A^{\sigma}\right\rangle,\left\langle A^{\sigma}, A^{-\sigma}, I^{\sigma}\right\rangle \subset I^{\sigma}$. A pair A will be called simple iff $\left(A^{\sigma}, A^{\sigma}, A^{\sigma}\right) \neq 0$ and its only ideals are 0 and A. Let $A=\left(A^{+}, A^{-}\right)$be a complex pair and $*=\left(*^{+}, *^{-}\right)$a couple of conjugate-linear mappings $*^{\sigma}: A^{\sigma} \rightarrow A^{-\sigma}$ for which $*^{\sigma} \circ *^{-\sigma}=I d$ and $\left\langle x^{\sigma}, y^{-\sigma}, z^{\sigma}\right\rangle^{*^{\sigma}}=\left\langle\left(z^{\sigma}\right)^{*^{\sigma}},\left(y^{-\sigma}\right)^{*^{-\sigma}},\left(x^{\sigma}\right)^{*^{\sigma}}\right\rangle$ for $x^{\sigma}, z^{\sigma} \in A^{\sigma}$ and $y^{-\sigma} \in A^{-\sigma}$. Then $*=\left(*^{+}, *^{-}\right)$is called an involution of A. We say that A is an H^{*}-pair if A^{+}and A^{-}are also Hilbert spaces over the complex numbers with inner products $(\cdot \mid \cdot)_{\sigma}: A^{\sigma} \times A^{\sigma} \rightarrow \mathbb{C}$, endowed with an involution $*=\left(*^{+}, *^{-}\right)$such that

$$
\begin{aligned}
\left(\left\langle x^{\sigma}, y^{-\sigma}, z^{\sigma}\right\rangle \mid t^{\sigma}\right)_{\sigma} & =\left(x^{\sigma} \mid\left\langle t^{\sigma},\left(z^{\sigma}\right)^{*^{\sigma}},\left(y^{-\sigma}\right)^{*^{-\sigma}}\right\rangle\right)_{\sigma} \\
& =\left(y^{-\sigma} \mid\left\langle\left(x^{\sigma}\right)^{*^{\sigma}}, t^{\sigma},\left(z^{\sigma}\right)^{*^{-\sigma}}\right\rangle\right)_{-\sigma}=\left(z^{\sigma} \mid\left\langle\left(y^{-\sigma}\right)^{*^{-\sigma}},\left(x^{\sigma}\right)^{*^{\sigma}}, t^{\sigma}\right\rangle\right)_{\sigma}
\end{aligned}
$$

for $x^{\sigma}, z^{\sigma}, t^{\sigma} \in A^{\sigma}$ and $y^{-\sigma} \in A^{-\sigma}$. For any associative H^{*}-pair A, its symmetrized Jordan pair A^{J} is a Jordan H^{*}-pair with the same involution and inner product as A. We recall also that an H^{*}-pair A is said to be topologically simple when $\left\langle A^{\sigma}, A^{-\sigma}, A^{\sigma}\right\rangle \neq 0$ and its only closed ideals are $\{0\}$ and A.

Proposition 1. Let $J=\left(J^{+}, J^{-}\right)$be a topologically simple Jordan H^{*}-pair, then:
(a) J is non-degenerate.
(b) J is prime.
(c) $\operatorname{Soc}(J) \neq 0$.

Proof. The annihilator $A n n(J)$ of an H^{*}-pair is defined as the pair $\left(A n n^{+}(J), A n n^{-}(J)\right)$ such that $x \in A n n^{\sigma}(J)$ if and only if $\left\{x, A^{-\sigma}, A^{\sigma}\right\}=0$. In [1, Proof of Lemma 7], the relation

$$
Z(J):=\{x \in J:\{x, J, x\}=0\}=\operatorname{Ann}(J),
$$

where J is a Jordan triple system, is proved. This relation applied to the polarized Jordan triple system associated to J gives us (a).

As a consequence of $\left\{J^{\sigma}, J^{-\sigma}, J^{\sigma}\right\} \neq 0$ in a topologically simple H^{*}-pair we have (b).

The subpair generated by any x^{+}and any x^{-}is associative. If we take $x^{-}:=\left(x^{+}\right)^{*}$ we have an associative H^{*}-pair with isometric involution. If we suppose that $\left\langle x, x^{*}, x\right\rangle$ $=0$ for all $x \in J^{+}$, then we obtain immediately that J agrees with its annihilator. Hence there is some x^{+}such that the associative H^{*}-pair generated by x^{+}and $\left(x^{+}\right)^{*}$ does not agree with its annihilator. Any associative H^{*}-pair not agreeing with its annihilator and with a continuous involution, has a nonzero projection (polarizing, we can apply, for instance, the classification of complex H^{*}-ternary algebras given in [2]). Thus, we have that J has a nonzero projection e. Then the local algebra $J_{e^{-\sigma}}^{\sigma}$ is a Jordan H^{*}-algebra with zero annihilator (because of the global-to-local inheritance of nondegeneracy given in [7, Theorem 4.1]). It is known that a Jordan H^{*}-algebra with nonzero annihilator has a nonzero socle. Then J has a nonzero socle by the local-to-global inheritance result [7, Theorem 4.2]. Thus (c) is proved.

We say that an associative algebra A with involution $*$ is an $*$-envelope for a Jordan triple system T if $T \subset H(A, *)$ and T generates A.

An *-envelope A is *-tight if every nonzero $*$-ideal $I=I^{*}$ of A satisfies $I \cap T \neq 0$.
We have to remember that every complex H^{*}-pair $A=\left(A^{+}, A^{-}\right)$turns out to be a real H^{*}-pair restricting the field of scalars to \mathbb{R} and defining the inner products as $\left(x^{\sigma} \mid y^{\sigma}\right)_{\sigma}^{\mathbb{R}}:=\operatorname{Ke}\left(x^{\sigma} \mid y^{\sigma}\right)_{\sigma}$. This real H^{*}-pair is denoted by $A^{\mathbb{R}}=\left(\left(A^{+}\right)^{\mathbb{R}},\left(A^{-}\right)^{\mathbb{R}}\right)$.

We shall need the following result:

Theorem 1 (D'Amour [4, Theorem B]). For $i=1,2$ let T_{i} be a prime Jordan triple system with $Z\left(T_{i}\right) \neq 0$ (Zel'manov polynomial) and Z_{2}-graded $*$-tight algebra envelope
A_{i} (no nonzero graded *-ideal of A_{i} misses T_{i}), * a graded involution. Then any isomorphism $f: T_{1} \rightarrow T_{2}$ extends uniquely to a graded $*$-isomorphism $F: A_{1} \rightarrow A_{2}$.

Let $S=\left(\left\{A_{i}\right\}_{i \in I},\left\{e_{j, i}\right\}_{i \leq j}\right)$ be a directed system of pairs, we define the direct limit, $\lim S$, as $\left(A,\left\{e_{i}\right\}_{i \in I}\right)$ where A is a pair, and $e_{i}: A_{i} \rightarrow A$ are monomorphisms satisfying $\overrightarrow{e_{i}}=e_{j} e_{j, i}$ for $i, j \in I, i \leq j$, and $\left(A,\left\{e_{i}\right\}_{i \in I}\right)$ is universal in the usual sense. If every $A_{i}=\left(A_{i}^{+}, A_{i}^{-}\right), i \in I$ is an H^{*}-pair we define the concept of directed system of H^{*}-pairs in a similar way but $e_{j, i}: A_{i} \rightarrow A_{j}$ is required to be an isometric $*$-monomorphism and moreover, there must be real positive numbers h, k such that for all $i \in I$;
(1) $\left\|\left(x^{\sigma}\right)^{*^{\sigma}}\right\| \leq k\left\|x^{\sigma}\right\|, x^{\sigma} \in A_{i}^{\sigma}$.
(2) $\left\|\left\langle x^{\sigma}, y^{-\sigma}, z^{\sigma}\right\rangle\right\| \leq h\left\|x^{\sigma}\right\| \cdot\left\|y^{-\sigma}\right\| \cdot\left\|z^{\sigma}\right\|$ for every $x^{\sigma}, z^{\sigma} \in A_{i}^{\sigma}$ and $y^{-\sigma} \in A_{i}^{-\sigma}$.

We say that $\left(A,\left\{e_{i}\right\}_{i \in I}\right)$ is an H^{*}-direct limit of the direct limit of H^{*}-pairs S whenever A is an H^{*}-pair, each e_{i} is an isometric $*$-monomorphism, and for any couplc ($X,\left\{t_{i}\right\}_{i \in l}$) in which X is an H^{*}-pair and

$$
t_{i}: A_{i} \rightarrow X
$$

isometric $*$-monomorphisms verifying $t_{i} e_{i, j}=t_{j}$, then there is a unique isometric $*$-monomorphism $t: A \rightarrow X$ such that $t e_{i}=t_{i}$. This will be denoted as $A=\lim _{H^{*}} S$. The problem of the existence of H^{*}-direct limits can be solved as in the case of H^{*}-algebras. In fact, any directed system of H^{*}-pairs S has an H^{*}-direct limit (see [8, 3.3]).

Theorem 2 (Main theorem). Let $R=\left(R^{+}, R^{-}\right)$be an associative pair such that its symmetrized

$$
J=\left(R^{+}, R^{-}\right)^{J}
$$

is a topologically simple Jordan H^{*}-pair. Then J is the Jordan H^{*}-pair associated to a topologically simple associative H^{*}-pair.

Proof. J is topologically simple, hence R is prime. As $\operatorname{Soc}(J) \neq 0$ (Proposition 1), then $\operatorname{Soc}(R) \neq 0$. Therefore, there are dual pairs (X, X^{\prime}) and (Y, Y^{\prime}) such that R is a subpair of ($L(X, Y), L(Y, X)$) containing ($F(X, Y), F(Y, X)$).

If we consider the associative algebra

$$
A=\left(\begin{array}{cc}
F(X)^{\mathbb{R}} & F(X, Y)^{\mathbb{R}} \\
F(Y, X)^{\mathbb{R}} & F(Y)^{\mathbb{R}}
\end{array}\right)
$$

with the product

$$
\left(\begin{array}{ll}
\alpha_{1} & f_{1} \\
g_{1} & \beta_{1}
\end{array}\right) \cdot\left(\begin{array}{ll}
\alpha_{2} & f_{2} \\
g_{2} & \beta_{2}
\end{array}\right)=\left(\begin{array}{cc}
\alpha_{1} \cdot \alpha_{2}+f_{1} \cdot g_{2} & \alpha_{1} \cdot f_{2}+f_{1} \cdot \beta_{2} \\
g_{1} \cdot \alpha_{2}+\beta_{1} \cdot g_{2} & g_{1} \cdot f_{2}+\beta_{1} \cdot \beta_{2}
\end{array}\right)
$$

we have that $A \oplus A^{\mathrm{op}}$ is a Z_{2}-graded δ-tight algebra envelope of $P(J)^{\mathbb{R}}$ (the polarized Jordan triple system associated to J) with $\delta(x, y):=(y, x)$. Applying Theorem 1,*
extends to an automorphism $*^{\prime}: A \oplus A^{\mathrm{op}} \rightarrow A \oplus A^{\mathrm{op}}$ hence by an easy argument the original map $*: R \rightarrow R$ has two possibilities:
(a) $\langle a, b, c\rangle^{*}=\left\langle a^{*}, b^{*}, c^{*}\right\rangle$ or (b) $\langle a, b, c\rangle^{*}=\left\langle c^{*}, b^{*}, a^{*}\right\rangle$. The possibility (a) gives us a contradiction with the isomorphism between $R_{11}(e)$ and $M_{n}(C)$ described in [5, Ch. 1], $e=\left(e^{+},\left(e^{+}\right)^{*}\right)$ being a nonzero projection of R.

In [5, Theorem 3], it is proved that $\left\{J_{2}(e)\right\}=\left\{R_{11}(e)^{J}\right\}$, the family of the (2)Peirce spaces of J with inclusion, is a direct system of Jordan pairs and $\operatorname{Soc}(J)=\xrightarrow{\lim }$ ($\left\{R_{11}(e)^{J}\right\}$), Loos' result [6] can be refined in our case so as to find a direct system of H^{*}-subpairs $\left\{R_{11}(e)^{J}\right\}$, where e ranges in a suitable family of nonzero projections. Moreover, it is possible to prove that $\left\{R_{11}(e)^{J}\right\}$ and $\left\{R_{11}(e)\right\}$ are, with the inclusion, direct systems of Jordan H^{*}-pairs and associative H^{*}-pairs, respectively, and we have

$$
J=\overline{\operatorname{Soc}(J)}=\lim _{\lim _{H^{*}}}\left(\left\{R_{11}(e)^{J}\right\}\right)=\lim _{\lim ^{*}}\left(\left\{R_{11}(e)\right\}\right)^{J}=\left(R^{\prime}\right)^{J},
$$

R^{\prime} being a topologically simple associative H^{*}-pair. Furthermore, it can be proved that R is an associative H^{*}-pair whose symmetrization is J.

In fact, it is possible to prove the following result which would complement the previous one:

Consider a dual pair (X, Y) and J a Jordan H^{*}-subpair of

$$
(H(L(X, Y), \#), H(L(Y, X), \#))
$$

containing to $(H(F(X, Y), \#), H(F(Y, X), \#))$. Then J is the Jordan H^{*}-pair coming from topologically simple Jordan H^{*}-algebra or the Jordan H^{*}-pair coming from the symmetrization of certain ternary H^{*}-algebra.

References

[1] A. Castellón, J.A. Cuenca, Compatibility in Jordan H^{*}-triple systems, Boll. Un. Mat. Ital. B (7) 4 (1990) 433-447.
[2] A. Castellón, J.A. Cuenca, C. Martin, Ternary H^{*}-algebras, Boll. Un. Mat. Ital. B 6 (1992) 217-228.
[3] J.A. Cuenca, A. Garcia, C. Martin, Jacobson density for associative pairs and its applications, Comm. Algebra 17 (10) (1989) 2595-2610.
[4] A. D'Amour, Jordan triple homomorphisms of associative structures, Comm. Algebra 19 (4) (1991) 1229-1247.
[5] A. Garcia. Nuevas aportaciones en estructuras alternativas, Tesis Doctorales/Microficha núm. 157, Secretariado de Publicaciones de la Universidad de Málaga, 1995.
[6] O. Loos, On the socle of a Jordan pair, Collect. Math. 40 (2) (1989) 109-125.
[7] K. McCrimmon, Local algebras, in: Non-Associative Algebras and Its Applications, Kluwer Academic Publishers, Dordrecht, 1994.
[8] C. Martin, Nuevas aportaciones en H^{*}-teorías, Tesis Doctorales/Microficha núm. 76, Secretariado de Publicaciones de la Universidad de Málaga, 1991.
[9] A. Rodriguez, Jordan axioms for C^{*}-algebras, Manuscripta Math. 61 (1988) 297-314.

[^0]: * Corresponding author.

